" Mathematics " / ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -1 2 3 ..0: 1 + 1 = 0 ? မွန္လား ။ မွားလား ။

Pages

Sunday, January 31, 2010

1 + 1 = 0 ? မွန္လား ။ မွားလား ။



1 ႏွင္႔ 1 ေပါင္းရင္.. သုည ရပါတယ္တဲ႔..ဟုတ္ပါသလား.. ?

မွန္လား ။ မွားလား ။

သခ်ၤာေတြ တြက္ရင္း....... စိတ္ညစ္ေနမွာဆိုလို႔...
သခ်ၤသမားမ်ားအတြက္.....ရယ္စရာေလးတစ္ခုပါ... ။
စိတ္၀င္စားတယ္ဆိုရင္ေတာ႔... လိုက္တြက္ၾကည့္ေပါ႔ ... ။ :P

1 + 1 = 0 ?

Square Root = ,

i =

sqrt ( ab ) = sqrt (a) * sqrt (b) ,

= *
အေပၚက..ပံုစံကို..ရွင္းပါတယ္ေနာ္.. ေအာက္မွာ..တြက္ထားတာကိုၾကည့္ပါ ။
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
1 + 1 = 1 +
// = 1 , square root ( 1 ) က.. 1 ႏွင္႔ ညီပါတယ္ ။

= 1 +
// ( -1 ) ႏွင္႔ ( -1 ) ေျမွာက္ရင္လည္း 1 ပဲရပါတယ္ ။

= 1 + ( * )

= 1 + ( i * i )
// i = , i က.. Square Root (-1 ) ႏွင္႔ ညီပါတယ္ ။ အေပၚမွာျပထားပါတယ္ ။

= 1 + i^2

= 1 - 1

1 + 1 = 0

သုည ႏွင္႔ ညီ ပါတယ္ဗ်ာ... ။ ( ေပ်ာ္ရႊင္ပါေစ... ။ :P )



ေၾသာ္........ေမ႔ေနလို႔... ဒီေနရာမွာ...ေမးစရာ တစ္ခုရွိပါတယ္ ။

i = ႏွင္႔ ဘာလို႔ ေပးညီလိုက္ရတာလဲ.... ဆိုတာ။
ေအာက္မွာ..ဆက္ဖတ္ၾကည့္လိုက္ပါ... ။ ( ရွင္းသြားပါလိမ္႔မယ္ ။ )

Answer ::
i = √-1
if √4 = 2, then 2² = 4
if √.25 = .5, then .5² = .25
if √-1 = ±1, then (±1)² = ? Never get -1 back!
sometimes the square root of a negative number crops up.
For instance, when solving a quadratic equation
with the quadratic formula you might get
a negative under the radical.

Naming the √-1 as i, an imaginary number,
helps one to keep simplifying a radical.
Example; √-4 rewrite as √-1 • √4 (we CAN take sqrt of 4)
Ah, we can continue to simplify now:
2 • √-1 or 2i.
Don't let this stuff scare ya. It is just new.

i = sqrt ( -1 )

ၿပီးပါၿပီ.... ။

0 comments: