" Mathematics " / ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -1 2 3 ..0: 2010

Pages

Tuesday, February 16, 2010

Math Symbols ( သခၤ်ာ သေကၤတမ်ား )

Math Symbols ( သခၤ်ာ သေကၤတမ်ား )


Partial, pronounced doe

Greek letter Delta, Triangle in Geometry

Infinity

Greek letter Sigma, Sum, Summation

Union, in Set theory

Intersection, in Set theory

Subset, in Set Theory

Superset, In Set Theory

Parallel

Perpendicular

Approximately

Congruence

Proportional to

Belongs to, in Set theory

Less than or equal to

Greater than or equal to

Not equal to

Not approximately

Plus or minus

Empty set, containing no elements

Pi, Greek alphabet, denoting the ratio of circumference of a circle to its diameter. Approximately 22/7. Approximately 3.14


Delta, Greek alphabet, denoting a small quantity

Vector a

Unit vector a

= Alpha, Greek Alphabet, In Physics (Mechanics), denotes acceleration

= Omega, Greek Alphabet, In Physics (Mechanics), denotes angular velocity

= Beta, Greek alphabet, In atomics physics, denotes a type of particles, Beta particles.

= Gamma, Greek Alphabet, In atomic and nuclear physics, denotes a kind of rays, Gamma rays.

= Greek letter, Tau, in Physics, Mechanics, Torque.

= Greek letter, mu, in Physics, in Electiricty and Magnetism, Permeability.


= Greek letter, nu, in Physics, Optics, Refractive Index

= Greek letter, eta, in Physics, used to denote coefficient of Viscosity in Hydrodynamics, Hydostatics

= Greek letter, Sigma, lower case, in Physics

= Greek letter, Omega, upper case 

= Root, if no number other than 2 is put inside the symbol, Square root

= Power of, usually. This is not a universal code in mathematics though.

= Tetration, in number theory in Mathematics. As in Knuth's up-arrow notation. 

= Angle

= Negation, in Symbolic logic

= And, in symbolic logic 

= Or, in Symbolic logic

Up arrow as in Donald Knuth's up arrow notation. 

Up arrow as in Donald Knuth's up arrow notation. 

Chained arrow as in John Conway's chained arrow notation. 

: Tensor product

: Direct sum

: Direct product 

: Contains as a member

: Not an element of

: much less than

: much greater than

: congruent to

: asymptotic

: not equal to

: not less than

: not greater than

: not less than or equal to

: not greater than or equal to

: not subset

: not superset

: not similar

: not congruent

: not approximately equal to

: not asymptotic


Math Symbols.doc (Downlaod)

Differentiation Formulas ( 1 )

  • a and n are constants,
  • u and v are functions of x,
  • d is the differential operator.

  1.  


Differentiation Formulas.doc (Download)

Monday, February 8, 2010

Angle ( ေထာင္႔ )

Angle : Right Angle , Acute Angle , Obtuse Angle




မ်ဥ္းေျဖာင္႔ႏွစ္ခု ေတြ႕ဆံုေသာအခါ Angle ျဖစ္လာမည္ ။
မ်ဥ္းေျဖာင္႔တစ္ခုသည္ အျခားမ်ဥ္းေျဖာင္႔တစ္ခုေပၚတြင္
ေဘးခ်င္းယွဥ္လ်က္ ေထာင္႔ႏွစ္ခုျဖစ္ေစရန္ ေတြ႕ဆံုလိုက္ပါ ။
ထိုအခါ အေျခအေန ႏွစ္မ်ဳိး ျဖစ္လာႏိုင္သည္ ။







ေဘးခ်င္းယွဥ္လ်က္ ေထာင္႔ႏွစ္ခု မတူၾကေခ် ။








Acute Angles 

ငယ္ေသာေထာင္႔ကို Acute Angle ဟု ေခၚပါတယ္ ။

An acute angle is an angle measuring between 0 and 90 degrees.
Example:
The following angles are all acute angles.  

Obtuse Angles

ၾကီးေသာေထာင္႔ကို  Obtuse Angles ဟု ေခၚပါတယ္ ။

An obtuse angle is an angle measuring between 90 and 180 degrees.
Example:
The following angles are all obtuse.


Right Angles

A right angle is an angle measuring 90 degrees.
Two lines or line segments that meet at a right angle are said 
to be perpendicular. Note that any two right angles are
supplementary angles (a right angle is its own angle supplement). 

Example:
The following angles are both right angles



 

Wednesday, February 3, 2010

Post Lists

Angle ( ေထာင္႔ )
Computer ( ကြန္ပ်ဴတာ )
Abacus ( ေပသီး )
Identity ဆိုတာ.. ?
Inequation
Equation
Inequality ( မတူညီျခင္း )
Equality ( တူညီျခင္း )
၂ x ၂ = ၅ ? မွန္လား ။ မွားလား ။
1 + 1 = 0 ? မွန္လား ။ မွားလား ။
Number ဆိုတာဘာလဲ ?
Square Numbers
Even Number ႏွင္႔ Odd Number ( စံုကိန္း ၊ မကိန္း )
Prime Numbers
Real Number ( ကိန္းစစ္ )
Irrational Numbers
Rational Numbers ( ရာရွင္နယ္ကိန္း )
Integers ( Whole Numbers ) ကိန္းျပည့္မ်ား
Natural Numbers ( သဘာ၀ကိန္း )
သခၤ်ာဆိုတာ ဘာလဲ...

Tuesday, February 2, 2010

Computer ( ကြန္ပ်ဴတာ )





Computer ( ကြန္ပ်ဴတာ )
ဤေ၀ါဟာရသည္ ကမၻာေပၚတြင္ ကြန္ပ်ဴတာစက္မ်ား မေပၚေပါက္မီကပင္
ရွိခဲ႔ေသာ ေ၀ါဟာရျဖစ္ပါတယ္ ။ Computer ဟူေသာ ေ၀ါဟာရကို
အဘိဓာန္တြင္ ဤသို႔ အဓိပၸာယ္ဖြင္႔ထားပါတယ္ ။
Computer (noun) = one that computes: a person or thing that computes; mechanical or electronic apparatus capable of carrying out repetitious and highly complex mathematical operations at high speeds.
Compute (verb) = calculate: reckon; determine by calculation; count; estimate.
ကြန္ပ်ဴတာဟူသည္ တြက္ခ်က္ေသာသူ ( သို႔မဟုတ္ )
ပစၥည္းတြက္ခ်က္ရာတြင္ သံုးေသာစက္ ( သို႔မဟုတ္ )
လွ်ပ္စစ္ပစၥည္းကို ေခၚသည္ ။



ဂ်ာမန္ စာေရးဆရာႏွင္႔ ဒႆနပညာရွင္ Novalis က သခၤ်ာႏွင္႔
ကြန္ပ်ဴတာတို႔ ႏွင္႔ ပတ္သတ္၍ ဤသို႔ဆိုထားတယ္ ။


One may be a mathematician of the first rank without being
able to compute. It is
possible to be a great computer without
having the slightest be a idea of mathematics.


ဂဏန္းလံုး၀ မတြက္တတ္ဘဲ ၊ ပထမတန္းစာ သခ်ၤာပညာရွင္ ျဖစ္ႏိုင္သည္ ။
ထိုနည္းတူစြာပင္ ဂဏန္းတြက္ရာတြင္ အလြန္ကၽြမ္းက်င္ၿပီး သခၤ်ာလံုး၀
မတတ္ဘဲလည္း ျဖစ္ႏိုင္သည္ ။

ဤတြင္ သူဆိုလိုေသာသခၤ်ာမွာ Pure Mathematics ေခၚေသာ
အေတြးအေခၚကို ဦးစားေပးသည့္ သခၤ်ာျဖစ္သည္ ။


မည္သို႔ပင္ျဖစ္ေစကာမူ ယခုေခတ္သည္ Computer Age ေခၚ ကြန္ပ်ဴတာေခတ္
ျဖစ္ေနသည္မွာ မျငင္းႏိုင္ေခ် ။ ယခုေခတ္တြင္ ကြန္ပ်ဴတာကို သံုးေသာ
ေနရာမ်ားသည္ ဟင္းခ်က္ရာတြင္လည္းေကာင္း ၊ စာရင္းမွတ္ရာတြင္လည္းေကာင္း ၊
အခ်က္အလက္မ်ား စုေဆာင္းရာတြင္လည္းေကာင္း ၊ ဒံုးပ်ံလႊတ္တင္ရာတြင္
လည္းေကာင္း သံုးလ်က္ရွိရာ ၊ ကြန္ပ်ဴတာ မသံုးေသာေနရာဟူ၍
မရွိသေလာက္ကို ရွားပါးေနပါတယ္ဗ်ာ.. ။

Abacus ( ေပသီး )



Abacus ေခၚ ( ေပသီး ) သည္ ကမၻာေပၚတြင္ အေစာဆံုးေသာ
ကြန္ပ်ဴတာျဖစ္သည္ ။ ေပသီးကို လြန္ခဲ႔ေသာ ႏွစ္ေပါင္း ႏွစ္ေထာင္ေက်ာ္က
တရုတ္ႏိုင္ငံတြင္ တီထြင္ခဲ႔ပါတယ္ ။



ေပသီးသည္ အလြန္ကၽြမ္းက်င္ေသာသူ၏ လက္ထဲတြင္ သာမန္ဂဏန္းတြက္စက္
Calculator ထက္ပင္ ျမန္ဆန္ႏိုင္သည္ ။

ဒုတိယကမၻာစစ္ အျပီးေလာက္က .....
ဂ်ပန္ႏိုင္ငံ တိုက်ဴိျမိဳ႕မွ ေပသီးကၽြမ္းက်င္ေသာ စာေရးတစ္ဦးႏွင္႔
အေမရိကန္စစ္တပ္မွ ဂဏန္းတြက္စက္တြက္သူ စာေရးတစ္ဦးသည္

အေပါင္း ၊ အႏွုတ္ ၊ အေျမွာက္ ၊ အစား
ဂဏန္းပုစၧာမ်ားကို ျပိဳင္ဆိုင္၍တြက္ၾကရာ
ေပသီးက ပုစၧာတိုင္းကို ပိုမိုျမန္ျမန္ႏွင္႔ မွန္မွန္တြက္ႏိုင္ခဲ႔သည္ ။